ПAmIBIA UПIVERSITY
OF SCIEПCE AПD TECHחOLOGY
FACULTY OF HEALTH, APPLIED SCIENCES, AND NATURAL RESOURCES
DEPARTMENT OF MATHEMATICS AND STATISTICS

QUALIFICATION: Bachelor of Science Honours in Applied Statistics	
QUALIFICATION CODE: O8BSHS	LEVEL: 8
COURSE CODE: ASS 801S	COURSE NAME: APPLIED SPATIAL STATISTICS
SESSION: JULY 2022	PAPER: THEORY
DURATION: 3 HOURS	MARKS: 100

SUPPLEMENTARY/SECOND OPPORTUNITY EXAMINATION QUESTION PAPER	
EXAMINER	Dr D. NTIRAMPEBA
MODERATOR:	Prof G. O. ORWA

INSTRUCTIONS

1. Answer ALL the questions in the booklet provided.
2. Show clearly all the steps used in the calculations.
3. All written work must be done in blue or black ink and sketches must be done in pencil.

PERMISSIBLE MATERIALS

1. Non-programmable calculator without a cover.

ATTACHMENTS

1. Chi-square table

THIS QUESTION PAPER CONSISTS OF 3 PAGES (Excluding this front page \& Chi-square table)

Question 1 [23 marks]

1.1 (a) Briefly explain the following terminologies as they are applied to Spatial Statistics.
(i) Feature
(ii) Support
(iii) Local spillovers
(iv) Global spillovers
(b) State Tobler's first law of geography. Use this law to explain briefly what the influence of this law will be in Spatial Statistics.
(c) Briefly describe the three types of spatial data.
1.2 Let X_{1}, \ldots, X_{n} be random variables in ℓ^{2}. The symmetric covariance matrix of the random vector $\mathrm{X}=\left(X_{1}, \ldots, X_{n}\right)^{T}$ is defined by $\Sigma:=\operatorname{Cov}(\mathbf{X})=E\left[(\mathbf{X}-E(\mathbf{X}))(\mathbf{X}-E(\mathbf{X}))^{T}\right]$. Note that $\Sigma_{i, j}=\operatorname{Cov}\left(X_{i}, X_{j}\right)$
(a) Show that Σ is positive semi-definite.
(b) Define what it means for Σ to be a non-degenerate covariance matrix?

Question 2 [20 marks]

2.1 Consider a vector of areal unit data $Z=\left(Z_{1}, \ldots, Z_{n}\right)$ relating to n non-overlapping areal units. Additionally, consider a binary $n \times n$ neighbourhood matrix W, where $w_{k j}=1$ if areas (k, j) share a common border and $w_{k j}=0$ otherwise.
(a) Define mathematically the Geary's C statistic, and explain which values correspond to spatial auto-correlation and which values correspond to independence.
(b) Now consider the following model relating to spatial random effects associated with the areal units, $\omega_{k} \left\lvert\, \omega_{-k} \sim N\left(\frac{\rho \sum_{j=1}^{n} w_{k j} \omega_{j}}{\sum_{j=1} w_{k j}}, \frac{\sigma^{2}}{\sum_{j=1}^{n} w_{k j}}\right)\right.$, where in the usual notation ω_{-k} denotes all the spatial effects except the kth.
What type of model is this?
(c) Now suppose that one of the areal units is an island, and hence does not sharea common border with any of the other areas. Given the definition of the neigh-bourhood matrix W above, is the model described in the previous part a valid model? Justify your answer. If it is not a valid model, how could W be altered to make it a valid model?
2.2 The Poisson log-linear CAR model is fitted to a data set on coronary heart disease counts in the $n=271$ intermediate zones that make up the Greater Glasgow and Clyde health board. (a) The posterior median and 95% credible interval for the spatial dependence parameter (ρ) in the CAR model were: $\rho=0.921$ and $C I:(0.891,0.983)$. What does this tell you about the level of spatial autocorrelation in the data?
(b) Particulate matter air pollution was included as a covariate in the model for coronary heart disease, and its parameter estimate and 95% credible interval on the linear predictor scale (log-risk scale) are given by: $\beta=0.00234$ and $C I:(0.00167,0.00297)$. Compute the relative risk for coronary heart disease for a 1 unit increase in particulate matter concentrations and interpret the result.
2.3 Briefly compare spatial Lag and Spatial error models.

Question 3 [32 marks]

3.1 (a) Distinguish between strict stationarity, second order stationarity, and intrinsic hypotheses of a regionalised variable.
(b) Draw an example of a variogram model and indicate an nugget, range, and sill.
3.2 Suppose measurements of a geostatistical process Z are taken as shown on Fig 1. Compute the experimental variogram value corresponding to the direction of the x axis with the length of $50 \mathrm{~m}, \gamma(h=50)$

Figure 1: Data configuration and their values, with some values missing at certain locations.
3.3 Let the function of a spherical semi-variogram model be defined as

$$
\gamma(h)= \begin{cases}\tau^{2}+\sigma^{2} & \text { if } h>\phi \\ \tau^{2}+\sigma^{2}\left\{\frac{3}{2}\left(\frac{\|h\|}{\phi}\right)-\frac{1}{2}\left(\frac{\|h\|}{\phi}\right)^{3}\right\} & \text { if } 0 \leq h \leq \phi \\ 0 & \text { otherwise }\end{cases}
$$

Then derive the expression of spherical autocovariance function.
3.4 Let $\{Z(s): s \in D\}$ be an intrinsically stationary random function with known variogram function $\gamma(h)$.
(a) Show that the predictor for ordinary kriging at unsampled location s_{0} defined by

$$
Z_{O K}^{*}\left(s_{0}\right)=\sum_{i=1}^{n} w_{i} Z\left(s_{i}\right)
$$

is unbiased Estimator.
(b) Show that the variance of the prediction error is given by

$$
\begin{equation*}
\sigma_{E}^{2}=\operatorname{Var}\left(Z_{O K}^{*}\left(s_{0}\right)-Z\left(s_{0}\right)\right)=-\sum_{i=1}^{n} \sum_{j=1}^{n} w_{i} w_{j} \gamma\left(s_{i}-s_{j}\right)+2 \sum_{i=1}^{n} w_{i} \gamma\left(s_{i}-s_{0}\right) \tag{10}
\end{equation*}
$$

Question 4 [25 marks]

4.1 Let Z be a spatial point process in a spatial domain $D \in \Re^{2}$.
(a) Explain what is meant by saying that Z is:
(1) a homogeneous Poisson process(HPP).
(2) a regular process
(b) Describe briefly the difference between a marked and unmarked spatial point process [2]
4.2 Assume that Z is a homogeneous Poisson process(HPP) in a spatial domain $D \subset \Re^{2}$. Derive the:
(a) covariance density function
(b) pair correlation function.
4.3 Consider a spatial point process $Z=\{Z(A): A \subset D\}$, where D is the domain of interest.
(a) One hypothesis test of quantifying whether an observed spatial point pattern is completely spatially random is based on quadrat counts, write down the null and alternative hypotheses for this test, the test statistic, and the distribution of the test statistic under the null hypothesis.
(b) Consider an observed spatial point pattern with $n=100$ points across a rectangular domain D. The rectangular domain is then split into 6 quadrats containing 2 rows and 3 columns. The number of points in each of the six quadrats are: $20,15,10,30,12,13$. Use the method of quadrat counts to test whether the observed point pattern is a complete spatial random ${ }^{\text {. }}$
(c) Give two downsides of the hypothesis test based on quadrat counts.

END OF QUESTION PAPER

The Chi-Square Distribution

dfp	. 995	. 990	. 975	. 950	. 900	. 750	. 500	. 250	. 100	. 050	. 025	. 010	. 005
1	0.00004	0.00016	0.00098	0.00393	0.0157	0.10153	0.4549	1.32330	2.70554	3.84146	5.02389	6.63490	7.87944
2						0.57536	1.38629	2.77259	4.60517		6	4	663
3			0.2158	0.35185		1.21253	2.36597			7.81473	0	7	16
4			0.48442			1.92256				9.48773	9	13.27670	26
5									9.23636		0	7	0
6					2.20413				64464	12.59159	44938	9	58
7													
8							7.344	21885	. 36157	1	1.53455	20.09024	21.95495
9													
10												5	
11	2.	3				7.58414	0	13.70069		4	92005	24.72497	26.75685
12										7	6	7	
13							12.33976		3	3	0	5	29.81947
14													
15							14.33886		3		9	1	32.80132
16													
17			7.				16.33818	20.48868	24.76904	1	30.19101	33.40866	35.71847
18											8	1	
19	6.	7.		10.11701	11.65091	14.56200	18.33765		27.20357	3	5233	7	38.58226
20						15.45177			8	31.41043	1	37.56623	39.99685
21			10.28290		13	16.34438	2	8	9	7	35.47888	93217	41.40106
22	8.					17.23962	21		30.81328	33.92444	36.78071	28936	42.79565
23	9.	10			14.84796		22	27	32.00690	35.17246	38.07563	41.63840	44.18128
24	9.88	10			15		23						45.55851
25	10.5196	11.5239	13.11972	14.611	16	19	24.33	29.33885	34.38159	37.65248	40.64647	44.31410	46.92789
26	11.1	12.1	13	15		20			35.56317	38.88514	41.92317	45.64168	48.28988
27	11.807	12.8785	14.57338	16.15140	18.11390	21.74940	26.33634	31.52841	36.74122	40.11327	43.19451	46.96294	49.64492
28	12.4613	13.56	15.30	16	18	22.65716	27.33623	32.62	37.91592	41.33714	44.46079	48.27824	50.99338
29	13.12115	14.25645	16.04707	17.70837	19.76774	23.56659	28.33613	33.71091	39.08747	42.55697	45.72229	49.58788	52.33562
30	13.78672	14.95346	16.79077	18.49266	20.59923	24.47761	29.33603	34.79974	40.25602	43.77297	46.97924	50.89218	53.67196

